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Abstract.  This paper deals with the problem of boundary layer growth on two circular cylinders in a flow with large 
Reynolds and Strouhal numbers. Analytic solutions for the stream function of the inner and outer flow field are 
obtained to the second order by using the method of matched asymptotic expansions. The dependence of the 
movement of the detachment points and the drag coefficients of the two cylinders on (i) the distance between them, 
(ii) the ratio of their radii, (iii) the Reynolds number and (iv) the acceleration parameter of the flow is investigated. 
The results obtained indicate that the mutual hydrodynamic interaction between two cylinders leads to some new 
relations and findings. 

1. Introduction 

This paper is an investigation having the overall objective of obtaining an approximate 
solution for the problem of unsteady motion of two bodies in a viscous fluid. An important 
class of such fluid flows is that in which the bodies start to move from rest either impulsively 
or with acceleration. 

Rayleigh [1] solved the problem when an infinite plate is moved impulsively in its own 
plane at a speed U 0 in a viscous fluid. In 1950, Howart [2] discussed another problem of the 
Rayleigh type--a semi-infinite flat plate is moved impulsively parallel to its edge in a viscous 
fluid. The motion of a wedge in a viscous fluid has been studied by Hasimoto [3] and 
Sowerby and Cooke [4]. An exact solution for the problem of an impulsive motion of a 
circular cylinder parallel to its generators is due to Carslaw and Jaeger [5]. Generalizing their 
solution, Batchelor [6] considered the impulsive motion of a cylinder of arbitrary cross- 
section parallel to its generators. 

The problem of the growth of the boundary layer on a body which is started from rest in 
an infinite incompressible viscous fluid has been investigated by many authors. The first step 
was made by Blasius [7] who considered the case of an impulsively started circular cylinder 
as well as the case of a uniformly accelerated one. Goldstein and Rosenhead [8] extended his 
solution to the next approximation. G6rtler [9] and Watson [10] generalized that problem by 
assuming that the velocity of the cylinder varies as some power of time. All the above 
investigations were based on Prandtl's equations. 

It is well known that Prandtl's boundary layer theory, which is the foundation for 
development of the general viscous flow theory, gives us the first-order approximation to the 
solution of the Navier-Stokes equations for the limit of large Reynolds numbers. However, 
many flows that occur in modern technology possess properties that cannot be treated within 
the framework of Prandtl's approximation because it neglects the surface curvature and the 
displacement of the external flow by the boundary layer thickness. 

On the basis of high-order boundary layer theory short-time solutions for flows past a 
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cylinder which starts from rest with several different prescribed motions have been presented 
by Wang [11, 12], Zapryanov [13], Slavchev [14], Z. Zapryanov and P. Kalitzova-Kurteva 
[15], Simeonov [16]. 

For a long time, the flows in many engineering applications were assumed to be steady. 
Unsteady phenomena are worth studying only if they depart substantially from the quasi- 
steady state. An important class of such problems involves devices as the helicopter rotor, 
cascades of blades of turbomachinery and the ship propeller. Such devices operate in an 
unsteady environment and cannot be treated as quasi-steady. The lifting characteristics of an 
airfoil or drag characteristics of a blunt body encounter smooth or sudden changes in their 
environment and can not be considered as quasi-steady as well. 

Another  class of important unsteady engineering problems involves the study of the flow 
through heat exchangers in reactors. The most important elements of heat exchangers are 
circular tubes (cylinders) [17]. In some cases the situation is such that the cross viscous flow 
past two cylinders has to be used [18]. It is of particular interest to investigate the formation 
and the initial stage of development of unsteady boundary layers around two circular 
cylinders which initiate translational motion from rest with a velocity varying as some power 
of time. The case of impulsively started profiles can be obtained as a special case. In order to 
investigate the mutual interactions between the boundary layers on the cylinders and the 
inviscid outer flow we have solved approximately (as in [19, 20]) the full Navier-Stokes 
equations by using the method of matched asymptotic expansions. 

The early stages of viscous flows that start to move from rest either impulsively or with 
acceleration around two bodies contain valuable information of the flow properties. The 
character of the solution and its behaviour for small times is necessary input for the 
numerical calculations. That is why this kind of solution is essential in the study of unsteady 
flows and the thorough understanding of their properties [21]. 

2. Statement of the problem 

Let us consider two parallel circular cylinders of radii a and b immersed in a viscous, 
incompressible fluid with kinematic viscosity v and density p (see Fig. 1). It is assumed that 
the flow starts to move with linear velocity 

V ' ( t )  = U o ( t ' / T o )  ~ , V ( t )  = V ' ( t ) / U  o = t ~ 

in a direction parallel to the plane containing the axes of the cylinders and perpendicular to 
these axes. Here a i> 0 is a constant, t '  denotes the dimensional time, T O and U 0 are the 
characteristic time and velocity respectively. 

Due to the specific geometry of the two boundaries it is convenient to use bipolar 
co-ordinates (s c, r/), defined by the transformation 

x'  = c sinh ~?/(cosh 7 / -  cos ~:), y '  = c sin ~:/(cosh r / -  cos ~ ) ,  

where 0 ~  < ~ <2~-, - ~  < 7/< ~ and c > 0  is the focal separation. Then the two cylinders 
external to each other can be defined by r l = ~ / l < 0  ( a = c l c o s e c h r h l )  and r / = ~ / z > 0  
(b = clcosech n21) [22]. The fluid region will be bounded by r/1 < r /<  r/2, 0 ~< ~: < 2~- and at 
infinity ( ~: = 0, r /=  0). 
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Fig. 1. Schematic sketch of the problem. 
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Non-dimensional variables and parameters are introduced according to the scheme 

x '  = L x  , y ' =  L y , t' = Tot ,  u ' =  Uou , 

q / - -  UoL~O, Re = UoL/u  , St = L / U o T  o 

v'  = U o v  , 

where L = a is a typical length. 
We also assume [11, 12] large Reynolds and Strouhal numbers, so that 

1/St = 1 / / R e  = e ,  

where e is a small parameter  and u' is a constant of order unity. 

We concentrate our attention to small times, so we shall normalize t' by 

T 0 = e a / U  o or t ' = ( e a / U o ) t = ( e t ) a / U o =  T l a / U o ,  

and therefore the dimensionless form of the equations of motion and continuity is 

/ u O u  v Ou uv oh v"Oh~ 
OU + 6~ + + h2 
ot -fi ~ -fi ~ h ~ o~ 

h o~ h o,7 -~ ( h v ) - ~ ( h u )  , (1) 

av+~/u a v + v  a v + u v  oh u ~ ah~ 
ot L-~ ~ ~ ~ h ~ o~ h ~ 

_ 

h 077 h o ~ = L h 2 L o ~ a ~ J J  
(2) 

a (hu)+ a a~ ~ (by) = O, (3) 

where u, v are velocity components,  h = c /a(cosh  ~7 - cos ~:) and the pressure p '  is normal- 
ized with respect to pUZo St. 

If we introduce the Stokes stream function, such that 
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u = h -1  O~/O71 , v = - h  -1  O ~ / O ~  , (4) 

the equation of continuity will automatically be satisfied. 
During the initial interval of time an inviscid potential flow prevails throughout the entire 

flow field, as it is shown in [11] for one cylinder. By the method of separation variables [23] 
the stream function for irrotational flow around two circular cylinders is found. So in terms 
of the stream function, the initial and boundary conditions for the problem considered are 

• = 0  f o r t ~ < 0 ,  

• = t ~ sinhlrhl{sin ~:/(cosh r / - c o s  ~:) + ~ [2 e x p ( -  krh) s inh[k( r / -  ~71) ] 
k = l  

+ 2 exp(k~71) sinh[k('o2 - ~7)]] sin k ~ / s i n h [ k ( r l l  - ~72)]} as t---~ 0 + , 

(5) 

(6) 

• =O=O~/Or /  at r l = r  h and T1:1~2 , t > O ,  (7) 

-- t ~ sinhlnll sin sC/(cosh rl - cos ~) as ~:2 + r12~ 0 ,  t > 0.  (8) 

3. Solution of the problem 

In order to solve the problem (1)-(8)  we have used the method of inner and outer 
expansions. In this method the region around the cylinders is divided into three separate but 
overlapping regions and an appropriate perturbation scheme relevant for each region is 
considered. Since the changes along the cylinders are much smaller than the changes normal 
to them, we magnify the normal co-ordinate ~7, as in the classical boundary layers, 

(9) 

In the region of the boundary layer around the cylinder r I = '1"11 we assume the following 
asymptotic expansions: 

1X = U 1 q -  ,~b l  2 "~  " " • , V = lY, V 1 -~- E 2 U 2  - ~  " " " , 

P = P l  + sP a  + " " " , ~0 = e l ~ l  "F e Z O z  4 -  • • • , 

n) = h1( )[1 + + "  "], 

(lO) 

where h 1 (~:) and h 1 (~) h2 (~:) are the coefficients of a Taylor series of the elemental lengths 
h. Similar expansions would hold for if, 6, fi and ~ of the boundary layer around the cylinder 
77 = '172" 

For the outer flow field we assume that 

X~ = XI? 1 q-- E ~  2 -[- • • • , (11) 

and similar asymptotic expansions would hold for U, V and P. The expansions (10) and (11) 
are supposed to be derived from the same exact solution of the Navier-Stokes equations; 
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therefore they must match each other in the field where the three regions overlap. These 
matching conditions yield further boundary conditions for each expansion, and enable us to 
determine its successive terms alternately. It is easy to prove that the outer  flow field is 
irrotational. Thus all ~1, xF2 . . . .  are solutions of the Laplace equation 

02xly/0~2 + 02xlY/0~ 2 = 0 . (12) 

The boundary conditions for the outer  solution are the conditions at infinity, and for the 
inner solutions they are the no-slip conditions on the two cylindrical surfaces. The additional 
boundary conditions required are obtained by means of Kaplun's matching technique. 

Substituting (10) into (1), (2) and comparing like powers of e we find the first-order 
equations: 

OU 1 v'(cosh ~1 -- COS ~)2 02Ul cosh  "ql -- COS ~ Opl 
Ot - sinh2[~l[ O~ 2 sinh[r/x I O~ ' (13) 

Op,/O  = 0 ,  (14) 

and the second-order equations: 

0U 2 v'(cosh "01 -- COS ~)2 02U2 ~ s inh  ~ 1 0 P l  cosh  ~1 - cos  ~ ap2 
Ot sinh2 [-qll 0ff 2 sinh[rh [ 0~ sinh[~71[ 0~ 

c°shr/1-c°s ~ ( OUl O U l )  2v'~" sinhT/l(COshT/,-cos ~) 02Ul 
- sin-h~7] ul - ~  + °1 OC / + sinhZlr/ll OC 2 ' 

(15) 

ap2/O ~ = 0. (16) 

Similar equations would hold for Ua, Pl and for u2, P2- We notice that the first-order 
equations, (13) and (14), have the same form as the planar boundary layer equations. The 
second-order equations, (15) and (16), have extra terms which take the curvature into 
consideration. The boundary conditions are that the velocities on the two bodies are zero for 
each order and that the inner and outer solutions are matched by using intermediate 
variables. 

At  the initial stage, the boundary layers have not yet begun to grow. A potential flow 
prevails throughout the entire field, that is why qt 1 is just the stream function given in (6). 

Noting that the pressure does not vary across the boundary layer around the cylinder 
= ~1, we obtain the condition 

OPl _ OP1 = _  sinh[r/l[ OU_____L ] 
(17) 

O~ O~ ~ = ~ ,  cosh r  h - c o s ~  at In=,1' 

and the solution of (13). 
Since ~01 = 2V--~ J'~ u 1 d~, we have 

+ 1) 
2 r (a  + {) 

+ 22~F(a + 1)g~+1/2(~)] , (18) 
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where 

, sinhlnll 

c o s  

2 
go(q)  = v r(2  + 1) 

( 7  - -  ~ ) 2 a  e- r  2 d7 • 

Similar solutions are obtained for the boundary layer around the cylinder r /=  ~/2- For details 
see [23]. 

The expressions for ~2, qJ2 and ~z are obtained by applying the matching procedure. For 
example, 

r ( ~  + 1 ) [ _ ~ =  sinh[n07z-~7)] 
~2(s  c, 7/, t) = t~V'-u-~ F(a  + 3) ,,,- sinh[n(r/e _ r/l) ] y, sin n~: 

sinh[n011 - ~1)] 
- -  n~=l sinh[n(r/1- r/2)] ~ sin n~] , (19) 

where Yn and 3~n are known constants. 
A uniformly valid solution for the stream function can be found by adding the outer and 

inner solutions and subtracting the matching terms. 

4. Results and discussion 

A primary aim of this paper is to find on the basis of the obtained formulae the initiation of 
boundary layer separation (detachment) and the drag force experienced on each cylinder as 
a function of the flow acceleration, the Reynolds number and the distance between the 
cylinders. 

The decisive geometric characteristics of our study are the radii a and b of the cylinders 
and the distance d '  between their centres. The other geometric parameters ~31, ~72 and focal 
separation c are defined through the following relations 

D '2 + 1 -  k 2 D '2 + k 2 -  1 
"01 = - - a r c o s h  '172 = arcosh 

2D'  ' 2 k D '  ' 

c = - a  sinh B1 = b sinh ~/2 

where, see Fig. 1, 

b d d' d + b + a  
k = - ,  D = -  and D ' = - -  = - D + k + l .  a a a a 

The study of the interaction between the viscous boundary layer and the outer inviscid 
flow has interested investigators because it is often necessary to know the distribution of skin 
friction and heat transfer across the interface of fluids and solids. The mechanism by which 
the outer flow feeds energy and momentum into the wake behind the blunt body is 
intimately connected with the phenomenon of separation. The aim of all analytical contribu- 
tions in this area is to determine the point of separation. It is believed that the position of 
separation and the flow properties in its neighbourhood must be known before one can 
proceed to study and calculate the wake, containing coherent large-scale vortices in a 
relatively organized manner. If the amount of vorticity produced in the boundary layer at the 
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location of separation is known, then even inviscid theories could model successfully the 
wake [24]. In our theoretical investigation we follow the same ideology. We have obtained 
the solution of the problem formulated in Section 2 only for small times when the influence 
of the wake of the first cylinder on the flow around the second one is negligible. It is well 
known that up to now very little has been done to study analytically the properties of an 
unsteady (turbulent)  wake made up of large-scale vortices. So for us the most interesting 
features of the flow for small times are: (i) the appearance of the point of zero skin friction 
which marks the onset of flow reversal, (ii) the hydrodynamic force interaction between the 
two cylinders. 

4.1. Separation on the two cylindrical surfaces 

The results obtained in the previous section have made it possible to examine the appearance 
of a point of zero skin friction, which marks the onset of the flow reversal. Setting the skin 
friction zero on the cylinders to the second order  of approximation, we obtain: 

(0u, 0u2) 
O~ + e -~-~/ = O, (20) 

oa, o,72] 
O~ + 0 ~ /  '~ = o = 0  (21) 

The separation time Tls on the two cylinders can be calculated from equations (20) and (21). 
The distance covered by the fluid before detachment first takes place on each of the 

cylinders is given by 

o- = Uo t~ dt ' /a : [(v' Re)~/(a + 1)1Tls  1 . 
0 

When a = 0 we obtain o-= Tls. 
Some computations have been made to find out the dependence of the situation on (i) the 

Reynolds number  Re,  (ii) the separation distance D, (iii) the acceleration parameter  a,  and 
(iv) the ratio of the cylinder radii k. 

Figure 2 shows the dependence of the initial-time boundary layer detachment on the 
Reynolds number  Re for an impulsive (at = 0) and a uniformly accelerated (~ = 1) flow 

0.6 

0 
so fbo 

[ica~ cylinder T~ ,,,., .~ecoo.d cye~nder 
v .V 

02 

i5oo 50 /oo t oo i5oo 

~=0 

Fig. 2. Dependence of the initial-time boundary layer detachment on the Reynolds number for impulsive and 
uniformly accelerated flows around two cylinders. 
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around the cylinders. It is seen f rom this figure that in the case of the impulsive motion the 
de tachment  t ime changes slightly as the Reynolds number  increase while in the case of 
accelerated mot ion the time at which detachment  first appears  is lessened strongly. We have 
drawn in Fig. 3 the graph of the dependence  of the distance o- on the position (~:) on the 
cylinder surfaces at Re = 100, k--- 1, D = 1.1 and various values of  the acceleration parame-  
ter c~. The initial de tachment  t ime on the cylinder surfaces as a function of the separat ion 
distance D at Re  = 1000, a = 0 and various k are given in Fig. 4. One can observe that  the 
influence of the separat ion distance on the de tachment  t ime is stronger on the first cylinder 
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Fig. 3. D e p e n d e n c e  o f  t he  d i s t a n c e s  o- o n  ~ a t  R e  = 100, k = 1, D = 1.1 a n d  v a r i o u s  a .  
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Fig. 4. In i t ia l  d e t a c h m e n t  t ime  as a f u n c t i o n  o f  t he  s e p a r a t i o n  d i s t a n c e  D at  R e  = 1000,  a = 0 a n d  v a r i o u s  k .  
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than on the second one. We arrive also at the conclusion that the detachment  time from the 
cylinders increases as the ratio of the cylinder radii k increases. 

In Fig. 5 we present the streamline pattern for the first cylinder when the separation 
distance is very large, D = 20, and Re = 100, k = 1, a = 0, T~ = 1. For  such D there is no 
difference at all between the streamline pattern around the first cylinder and around the 
second one. The comparison between the streamline pattern given in Fig. 5 with the 
streamline pattern obtained by Wang for a single circular cylinder under the same conditions 
shows a good coincidence (see Fig. 3 in [11]). This is so because Wang's solution for a single 
circular cylinder, under  the same conditions, is a particular case of our  solution for two 
circular cylinders when the separation distance D between them is very large. 

Although our solution is based on the small-time assumption, qualitative results for large 
times are also obtained. Sure enough, for finite times, the first zero skin friction appears on 
the surface of the body to mark the onset of the flow reversal. It may be thought that the 
onset of reversed flow at once heralds the phenomenon  of detachment in which the notion of 
a thin boundary layer embedded within an inviscid flow fails. Proudman and Johnson [25] 
demonstra te  that this need not be the case. After  the appearance of flow separation one can 
observe two recirculating bubbles behind each of the cylinders that are characterized by the 
points of detachment  and reat tachment  on the two bodies. These bubbles are formed as a 
result of the convective non-linear terms in the Navier-Stokes  equations. It is well known 
that a bubble is defined as a body of fluid contained in a closed steamline. A bubble is said to 
open or burst if the bounding contour  opens, while retaining inside closed streamline loops. 
An interesting behavior is observed,  at higher Reynolds numbers,  that bubbles may burst 
unexpectedly.  

4.2. Hydrodynamic force interaction 

In order  to investigate the hydrodynamic force interaction between the two cylinders it is 
necessary to calculate the integral effect of the hydrodynamic stresses acting upon each 
cylinder, which is equal to: 
i) for the upstream cylinder 

f]'~ ( ax' ax"~ 7=,71d ~ 
Fx'l = P 1 2  ~ - -kP22  O n  / , (22) 

ii) for the downstream cylinder 

Fig. 5. S t r e a m l i n e  p a t t e r n  f o r  t w o  c y l i n d e r s  a t  D = 20,  R e  = 100, k = 1, a = 0,  T 1 = 1. 
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+P22 ~-~ /  ,= ,2d~ • (23) 

Here  P12 and P22 are the tangential and normal components of the stress tensor. 
After some algebra we have, from (22) and (23), 

i) for the upstream cylinder 

Fx,, £2,~( Ou, n=n ~ O p ,  
C D 1  - -  p - - U 0 2  St a - ev'  sinh r/, - ~ -  + sinhl~711 ~ -  

OP2 
+ sinhivlle ~ ,=n,) 

sin 
cosh 71 - cos 

d~, (24) 

ii) for the downstream cylinder 

CD2 Fx'2 = f~ "~ ( - ev '  sinhrl2 0~l ,~=,72 Ofi~ ,~,2 pU 2 St a - ~  + sinhl'01l ~ -  

O f i 2 1 )  s i n ,  d , .  
+ sinh]~7~ l e - -~  , ='~: cosh n2 - cos (25) 

The hydrodynamic interaction force of the two cylinders depends strongly upon the values 
of the separation distance D. Figure 6 shows the drag coefficient of the two cylinders as a 
function of the separation distance D at Re = 100, k = 1, ~ = 0 and various small values of 
time T 1. When the radii of the cylinders are equal and the times are small enough, in 
contrast to the steady flow past two circular cylinders [18], in the case of unsteady motion 
started from rest the drag coefficient of the downstream (second) cylinder is greater than the 
drag coefficient of the upstream (first) one. The explanation of this phenomenon is the 

. . . .  

oo, l f j -  

Qoo t I ..... 
5" t0 /5" ~.0 .D 

Fig. 6. D r a g  coef f i c i en t s  o f  t w o  c y l i n d e r s  as a f u n c t i o n  o f  t he  s e p a r a t i o n  d i s t a n c e  O a t  R e  = 100, k = 1, a = 0 a n d  

d i f f e r e n t  t i m e  T 1. 
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following. Since the initial condition (6) of the stream function represents the potential flow 
past two circular cylinders, the flow field of the viscous fluid is at first "inviscid". Due to the 
flow delaying behind the first cylinder, the velocity in front of the second cylinder is smaller 
than the velocity in front of the first one. So the pressure behind the first cylinder is greater 
than the pressure in front of it. That is why for very small times the drag coefficient of the 
downstream cylinder is greater than the drag coefficient of the upstream one. In the 
subsequent development of the flow the "viscous correction" increases quickly and one 
obtains the usual situation in which the drag coefficient of the first cylinder becomes greater 
than that of the second one. As can be expected, when the separation distance D tends to 
infinity, the drag coefficients of the two cylinders tend to that of a single circular cylinder 
under the same flow conditions. 

The dependence of the drag coefficients of the two equal cylinders on the time T 1 and the 
separation distance D, for various values of the Reynolds number Re and the acceleration 
parameter a, are given in Figs 7 and 8 respectively. It is seen that the drag coefficients of the 
two cylinders decrease with increasing Reynolds number, and they increase with increasing 
acceleration parameter. The drag coefficient of the upstream cylinder is an increasing 
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. . . .  seco~c{ cy e ~ d e r  
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Fig. 7. D e p e n d e n c e  of  the  d r a g  coeff ic ients  of  the  two  cy l inders  on  the  t i m e  T 1 at  k = 1, a = O, D = 1 and  d i f fe ren t  
va lues  of the  R e y n o l d s  n u m b e r .  
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Fig. 8. Dependence of the drag coefficients of the two cylinders on the separation distance D for different values of 
the acceleration parameter a at Re = 500, k = 1, T 1 = 0.03. 

function of the separation distance D for all values of the acceleration parameter  a. It is 

interesting to note that for small times and small separation distance D the dependence of 

the drag coefficient of the downstream cylinder on the acceleration parameter  a is nonlinear. 

While for ~ = 0.5, a = 1, a = 1.5 the drag coefficient of the downstream cylinder is an 
increasing function of the separation distance D, for a = 0 and a -- 2 the drag coefficient of 

the downstream cylinder is a decreasing function of the separation distance D. 

Figure 9 presents the drag coefficients of the two cylinders as a function of the time T 1 for 
various values of the ratio of the radii of two cylinders and Re = 500, a = 0, D = 1. The 

graphs 1, 2 and 3 in Fig. 9 show that when the radius of the second cylinder is equal to or 
greater than the radius of the first one, the difference between the drag coefficients of the 

second and the first cylinder increases with the increasing of the time T 1. When the radius of 
the second cylinder is smaller than the radius of the first one, the already mentioned 

difference decreases (graph 4 in Fig. 9) with the increasing of the time T I. 
In literature there are no results treating the unsteady interactions between two circular 

cylinders at small times. That is why we have compared our results in the limit case of large 
distance between the two bodies with the results in the case of one cylinder. Hence, in Fig. 
10 we compare our results with Dennis and Staniforth's results [26] for the dependence of 
the quantity C D St on the time T 1 at D = 30, a = 0, k = 1 and various values of the Reynolds 
number. As can be seen from this figure the coincidence of the two results is excellent. 

We note that unsteady separation responds with some inertia to an abrupt increase in the 
adverse pressure gradient. Applying the boundary layer equations we have specified the 

separation points in order to allow the continuation of the solution in terms of an 
appropriate wake model. In the dependence of the cylinder drag coefficients in unsteady 
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flows, viscosity plays a very significant role. It  is due to shear ing  effects and  their  s u b s e q u e n t  

d e v e l o p m e n t  in to  small-  or  large-scale tu rbu lence .  

5. Conclusions 

Afte r  apply ing  the m e t h o d  of ma t ched  asymptot ic  expans ions  we have o b t a i n e d  new results 

for the fo rma t ion  and  ini t ial  stage of d e v e l o p m e n t  of the b o u n d a r y  layers a r o u n d  two circular  

cyl inders  in a viscous flow with a veloci ty at infinity varying  as some power  of t ime.  These  
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results generalize those concerning the single cylinder moving in an unbounded viscous fluid 
with the same velocity [10, 14]. The obtained approximate  solution is valid for small times in 
the case when the flow at infinity is parallel to the plane containing the cylinders axes and 
perpendicular  to these axes and for Reynolds number  much larger than one, but small 
enough for the flow to remain stable. 

It is shown that when the Reynolds number  is large and the two equal cylinders are placed 
at large distance, the interaction between them fades away rapidly and the streamline pat tern 
has the structure of the flow pat tern  for a single circular cylinder with the same radius and 
the same flow conditions. As the acceleration pa ramete r  increases, the times at which 
detachment  first appears  are reduced strongly, while as the Reynolds number  increases the 
de tachment  times change weakly. The influence of the separat ion distance on the detach- 
ment  times is stronger for the first cylinder than for the second one. In the case when the 
radii of  the cylinders are different,  the detachment  times f rom them increase as the ratio of 
the cylinder radii k increases. 

It  should be ment ioned that, in contrast  to the steady flow past two circular cylinders, in 
the case of unsteady motion started f rom rest, the drag coefficient of  the downstream 
cylinder for small times is greater  than the drag coefficient of the upstream one. While the 
drag coefficient of  the ups t ream cylinder is an increasing function of the separation distance 
for all values of the acceleration parameter ,  the drag coefficient of the downstream cylinder 
is an increasing function of the separat ion distance for some values of the acceleration 
parameter ,  and it is a decreasing function for the other  values of the same parameter .  The 
drag coefficient for both cylinders increases with increasing acceleration parameter ,  

Further  we add that in the case of  an impulsive mot ion the drag coefficient of each of the 
cylinders decreases with increasing Reynolds number.  When the radius of the second 
cylinder is equal to or greater  than the radius of the first one, the difference between the 
drag coefficients of the second and the first cylinder increases with increasing time. When the 
radius of the second cylinder is smaller than that of the first one, this difference decreases 

with increasing time. 
Finally, we note that the scheme used for application of the method of inner and outer  

expansions for two-body hydrodynamic  problems,  appears  to be capable to obtain many new 

relations and findings in the field of fluid mechanics. 
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